71.0908q^(1/3)=8.0590q

Simple and best practice solution for 71.0908q^(1/3)=8.0590q equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 71.0908q^(1/3)=8.0590q equation:


q in (-oo:+oo)

71.0908*q^(1/3) = 8.059*q // - 8.059*q

71.0908*q^(1/3)-(8.059*q) = 0

71.0908*q^(1/3)-8.059*q = 0

t_1 = q^(1/3)

71.0908*t_1^1-8.059*t_1^3 = 0

71.0908*t_1-8.059*t_1^3 = 0

t_1*(71.0908-8.059*t_1^2) = 0

-8.059*t_1^2 = -71.0908 // : -8.059

t_1^2 = 8.82129296

t_1^2 = 8.82129296 // ^ 1/2

abs(t_1) = 8.82129296^(1/2)

t_1 = 8.82129296^(1/2) or t_1 = -8.82129296^(1/2)

t_1 = 0

t_1 = 0

t_1 = 8.82129296^(1/2)

q^(1/3)-8.82129296^(1/2) = 0

1*q^(1/3) = 8.82129296^(1/2) // : 1

q^(1/3) = 8.82129296^(1/2)

q^(1/3) = 8.82129296^(1/2) // ^ 3

q = 8.82129296^(3/2)

t_1 = -8.82129296^(1/2)

q^(1/3)+8.82129296^(1/2) = 0

1*q^(1/3) = -8.82129296^(1/2) // : 1

q^(1/3) = -8.82129296^(1/2)

( -8.82129296^(1/2) < 0 i 1/3 in (0:1) ) => q należy do O

t_1 = 0

q^(1/3)+0 = 0

q^(1/3) = 0

1*q^(1/3) = 0 // : 1

q^(1/3) = 0

q = 0

q in { 8.82129296^(3/2), 0 }

See similar equations:

| x=ln(y^2-9) | | 5a=7a+35 | | 2t+8=8t | | 2x+5x=52.5 | | 8ab+b= | | -8g(h-3g)= | | y=4E+08x+4E+07 | | 18(55.6+-1.17y)+21y=1000 | | 18(55.55555556+-1.166666667y)+21y=1000 | | 4(3+2x)-x=3x | | 18x+21y=1000 | | k/20=6 | | sin*(x-10)=cos*34 | | 6/5-2 | | 5(2x+3)-4x=-4(x-6) | | 3z+6=5z+5 | | 71.0908q^1/3=8.0590q | | 32t+16t^2= | | x=.25*(60000-x) | | X/-2=1.4 | | 6q-1=12 | | 3a+4b=a+6 | | 350/8 | | 40x^2+20xy= | | 4y+18=7y-3 | | 5p^2+34p+45pm= | | x/4=2/3 | | 0.25x=400 | | 2p+1=p+4 | | 4=-x-2 | | 4(8-7n)= | | a-3=7*a+27 |

Equations solver categories